
CHAPTER 6 - CAPACITORS AND INDUCTORS

List of topics for this chapter :
Capacitors
Series and Parallel Capacitors
Inductors
Series and Parallel Inductors
Applications

CAPACITORS

Problem 6.1 For the circuit shown in Figure 6.1, find )t(ic  given
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Problem 6.2 Find )t(vc  as shown in Figure 6.1, given that
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Figure 6.1
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These voltages are quite large.  This is due to the large currents and small
capacitances.  Normally, the currents would be quite small, in the µA range.
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Problem 6.3 [6.11] A voltage of V)t4cos(60 π  appears across the terminals of a
3-mF capacitor.  Calculate the current through the capacitor and the energy stored in it from
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Problem 6.4 Find )t(vc , as shown in Figure 6.1, given that

Figure 6.1
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SERIES AND PARALLEL CAPACITORS

Problem 6.5 Given the circuit in Figure 6.1, V0)0(v1 =− , V100)0(v2 =− , calculate
the voltages after the switch closes.

Figure 6.1

 Carefully DEFINE the problem.
Each component is labeled completely.  The problem is clear.

 PRESENT everything you know about the problem.
Since the capacitors are in parallel, the charge, CVq = , must remain the same.

Also, when the switch is closed, the voltages across the capacitors are the same.

 Establish a set of ALTERNATIVE solutions and determine the one that promises the
greatest likelihood of success.
The three solution techniques that can be used are nodal analysis, mesh analysis, and basic
circuit analysis.  Basic circuit analysis can be used to solve this problem.

 ATTEMPT a problem solution.
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Clearly, the energy has gone from 5 J to 2.5 J.  What happened to 2.5 J of energy?  Well, the
switch cannot close fast enough to keep from having a spark.  Thus, 2.5 J of energy must be
dissipated in the spark.

 EVALUATE the solution and check for accuracy.
After the switch closes, the charge of 0.1 C remains the same and the voltage across both is
now the same, 50 V.
Our check for accuracy was successful.

 Has the problem been solved SATISFACTORILY?  If so, present the solution; if not,
then return to “ALTERNATIVE solutions” and continue through the process again.
This problem has been solved satisfactorily.

== 21 vv V50

Problem 6.6 Find the equivalent capacitance for the collection of capacitors shown in
Figure 6.1.
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Problem 6.7 Given that the equivalent capacitance of the collection of capacitors shown in
Figure 6.1 is F30 µ , find 1C  and 2C .

Figure 6.1
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There is an infinite number of solutions.
To find one solution, let F10C2 µ= , the network is similar to the one shown in Problem 6.6.
The first two combinations are the same.  Hence, we have
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or 20C30C10 11 =→=+

Therefore, =1C F20 µµµµ  and =2C F10 µµµµ  produce F30Ceq µ=

Problem 6.8 [6.17] Calculate the equivalent capacitance for the circuit in Figure 6.1.
All capacitances are in mF.
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The circuit is reduced to that shown below:
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INDUCTORS

Problem 6.9 For the circuit shown in Figure 6.1,

Figure 6.1
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Problem 6.10 For the circuit shown in Figure 6.1, calculate )t(vL  given that
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Problem 6.11 [6.35] The voltage across a 2-H inductor is V)e1(20 t2-− .  If the
initial current through the inductor is 0.3 A, find the current and the energy stored in the inductor
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Problem 6.12 For the circuit shown in Figure 6.1, calculate )t(iL  given that
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SERIES AND PARALLEL INDUCTORS

Problem 6.13 Given the collection of inductors shown in Figure 6.1, find the value of the
equivalent inductance.

Figure 6.1
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Problem 6.14 Given the collection of inductors shown in Figure 6.1, find the values of 1L
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Problem 6.15 

Figure 6.1

There is an infinite number of solutions.

However, if H5L2 = , the network is similar to the one shown in Problem 6.13.  The first two
combinations are the same.  Hence, we have

5 in series with eq1 LL =

or 15L20L5 11 =→=+

Therefore, =1L H15  and =2L H5  produce H20Leq =

APPLICATIONS

Problem 6.16 Calculate the voltage across the current source in Figure 6.1 given that
A)5t()t(i += .

Figure 6.1

 Carefully DEFINE the problem.
Each component is labeled completely.  The problem is clear, except for the value of the
capacitor voltage at some point in time.
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 PRESENT everything you know about the problem.
We know the current as well as the values of the elements.  However, we do not know the
initial condition on the voltage across the capacitor.  We will solve for the voltage across the
current source assuming that the capacitor voltage at 0t =  is equal to )0(vC .

 Establish a set of ALTERNATIVE solutions and determine the one that promises the
greatest likelihood of success.
The three solution techniques that can be used are nodal analysis, mesh analysis, and basic
circuit analysis.  Basic circuit analysis will be used to solve this problem.

 ATTEMPT a problem solution.
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 EVALUATE the solution and check for accuracy.
The current through each element is the same.  The voltage across each element was
determined while attempting a problem solution.
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Our check for accuracy was successful.

 Has the problem been solved SATISFACTORILY?  If so, present the solution; if not,
then return to “ALTERNATIVE solutions” and continue through the process again.
This problem has been solved satisfactorily.
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Problem 6.17 Given the circuit in Figure 6.1, find )t(v  for V)t510()t(vC += .
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Problem 6.18 [6.67] Design an analog computer to simulate
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Thus, by combining integrators with a summer, we obtain the appropriate analog computer
as shown below.
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Problem 6.19 Calculate )t(v  and )t(vL  for the circuit shown in Figure 6.1 and
vC(0) = –10 Volts (with the plus side of vC at the top of the capacitor).

Figure 6.1
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