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Abstract. We explore the use of constraints with divisive hierarchical
clustering. We mention some considerations on the effects of the inclusion
of constraints into the hierarchical clustering process. Furthermore, we
introduce an implementation of a semi-supervised divisive hierarchical
clustering algorithm and show the influence of including constraints into
the divisive hierarchical clustering process. In this task our main interest
lies in building stable dendrograms when clustering with different subsets
of data.

1 Background

The aim of cluster analysis is to explore a collection of data items and to group
similar objects together. Similarity can be measured in many different ways, for
example by the Euclidean distance. Every information used in an unsupervised
learning technique comes from the data themselve, which means no external
teaching signal guides the algorithm. During the past years several modifications
were proposed to incorporate additional background knowledge into clustering
algorithms [1–9]. The main idea is that in some tasks prior information about a
small amount of data is known and should support the clustering process. This
background information is usually provided as a set of constraints between pairs
of data items [2]. Real class labels seem not feasible in clustering because of
the inherent discrepancy between labels and clusters. Pairwise constraints are
typically encoded as must-links and cannot-links [2] either indicating two points
belong to the same cluster or to different clusters.

Up to now different clustering algorithms were adapted to make use of semi-
supervised clustering. Constraint-based approaches modify the cluster search,
either by including constraints into the objective function [1] or by initalizing and
constraining during the clustering process [10, 3, 9]. Metric-based approaches first
train the cluster metric to satisfy the constraints using shortest-path algorithm
[4], expectation maximization [5], gradient descent [6], convex optimization [7, 8]
or combinations of constraint-based and metric-based methods [11].
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Many real-world unsupervised learning tasks may profit from an inclusion of
background knowledge, e.g. image processing, text mining or even lane finding
using GPS data. Another important field for data mining using semi-supervised
clustering is the functional grouping of genes. For this problem we are not only
interested in one particular clustering as built by partitioning clustering algo-
rithms, such as K-means or SOM, but in getting a hierarchy of partitions (den-
drogram).

Our main emphasis lies on building robust hierarchical clusterings for DNA
microarray data. Here we are interested in the resulting dendrogram and focus on
the question of creating stable dendrograms. In this setting one of the problems
that frequently arise is the change of the branching structure when computing
several runs with different data subsets. Since the inclusion of background knowl-
edge seems to enhance the accuracy of clustering algorithms, we studied its effect
on the dendrogram stability. In Section 2 we explain some basic annotations on
the effects of constraints in semi-supervised hierarchical clustering. In Section 3
we introduce our new algorithm for divisive hierarchical clustering with a-priori
information and section 4 shows our results from semi-supervised clustering in
hierarchical algorithms.

2 Background Knowledge in Hierarchical Clustering

2.1 Constraints

Background knowledge may be available in different forms, e.g. as labels or
constraints. Following Wagstaff & Cardie [2] we use cannot-link and must-link
constraints to insert a-priori information into our clustering algorithm. We don’t
use labels, because they indicate class memberships and a class can consist of
different and distant clusters. As mentioned above, must-links indicate two data
items being arranged in one cluster and cannot-links allude not to assign two
data items to the same group.

2.2 Effects from Constraints in Hierarchical Clustering

Constraints indicate a relationship between two data items. When a partition
of a data set into k cluster is computed, we may profit from including this form
of background knowledge, because constraints seem to support the clustering
algorithm to define the clusters of this partition more accurate. Computing a
hierarchy of partitions is a different task. Here we are confronted with a se-
quence of refinements of clusters. A hierarchy of partitions is either computed
by a subsequent assembly of two clusters or by a subsequent division of one clus-
ter. Whereas each partition is formed by a different number of clusters there is a
different set of relations between the data items in these clusters, i.e. every parti-
tion provides its own set of constraints, see Figure 1. In the following we present
two scenarios which should point up the effects of constraints in hierarchical
clustering.



On the Effects of Constraints in Semi-supervised Hierarchical Clustering 59

Fig. 1. Basic example for a data set with two clusters (Subfigure a, clusters �, o) and
its refinement into three clusters (Subfigure b, clusters �, + , o). Additionally each
partitioning provides its own set of constraints (lines = cannot-links, dashed lines =
must-links).

Effects from Cannot-Links: In our first scenario we want to show the effects
of cannot-links in hierarchical clustering. Imagine we want to compute a dendro-
gram for a data set using a divisive hierarchical clustering algorithm. To simplify
matters we only look on the first two levels of the computed dendrogram. These
two levels propose two partitions of the data set. On the first level we see a
partition into two clusters and on the second level one of these clusters is split
again. Additionally we can provide two different sets of cannot-link constraints.

Fig. 2. Different branching structures when providing a few cannot-links between clus-
ters on a lower level. Subfigure (a) shows a clustering into two (dashed circles) and three
clusters (�, + , o) and the corresponding dendrogram. Adding cannot-links (dashed
lines) between some elements from cluster + and cluster o results in a different clus-
tering on the second level, see Subfigure (b).
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The first set indicates relationships between data items from the partitioning
into two clusters and the second set contains cannot-links from the partitioning
into three clusters.

When incorporating the first set of constraints we may get a more accurate
clustering into two clusters, because cannot-links for data items on the bound-
aries of the clusters could guide the algorithm to improve the shape of the clus-
ters. Since all of these cannot-links could be resolved in the first clustering step,
we don’t use them in the further steps any more.

On the other hand we probably want to make use of the second set of con-
straints. The possible effect of the inclusion of this set of constraints could be
seen in Figure 2. In this example we see two initial clusters, one of them builds a
supercluster that could be refined again. After providing some cannot-links indi-
cating this refinement in the first step of the clustering procedure the algorithm
tries to resolve even these cannot-links. As a result either the constrained items
could not be assigned to the correct supercluster or actually a complete different
supercluster is built.

Effects from Must-Links: In this scenario we want to describe the effect of
adding must-links. Again we only look at the first two levels of the dendrogram,
but this time we only have one set of constraints containing must-links deduced
from the first level. Similar to the inclusion of cannot-links we can distinguish
between two effects. When we use must-links from clusters on the second level,
the dendrogram on the first level may profit from a finer definition of the shapes
of these two clusters.

Contrary to the above, in the next refinement steps these constraints hinder
the clustering algorithm. Figure 3 shows the results from adding must-links to
the divisive clustering algorithm. In this example two must-links could not be
correctly split.

Fig. 3. Partitioning into three clusters (�, +, o) after including must-links (dashed
lines) between elements from a partitioning into two clusters (dashed circles). When
splitting the lower cluster the two must-links hinder a correct refinement.
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3 Semi-supervised Divisive Hierarchical Clustering

In microarray data mining studies we are usually confronted with low-cardinality
data. Computing dendrograms after removing or adding some samples could
easily contradict a previous constructed hierarchy.

Figure 4 shows a simple two-dimensional example for this behaviour. Three
clusters were formed using Gaussian distribution. Randomly removing three
items results in different subsets of the data. Subfigures (a) and (b) show two
possible subsets. A hierarchical clustering of these two subsets results in two
contradictory dendrograms, where either cluster a and cluster b or cluster a
and cluster c are proposed to be similar. Applied to the task of gene functional
grouping, no unique branching structure can be predicted when working on in-
complete data sets, even though a correct clustering is found. In this section
we introduce our attempts to enhance the dendrogram stability by including
background knowledge into the clustering process.

3.1 Constraints

According to the considerations described in Section 2 we decided to restrict
the use of constraints. To avoid mixing constraints from different levels of the
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(a) Data subset one. X values are held out.
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(d) Cluster result from (b).

Fig. 4. Subfigures (a) and (b) show two different subsets of a simple two-dimensional
data set containing clusters a, b and c. The subsets are built by holding out three items,
for clarity marked by X. Clustering both subsets results in two different dendrograms.
In Subfigure (c) cluster a and c, in Subfigure (d) cluster a and b are deduced from one
combined cluster.
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dendrogram we only add constraints for one particular partition of the data set.
Furthermore, we use our set of constraints only for the clustering on this prede-
fined level. This means for example providing a set of constraints that include
cannot-links for a partition of three clusters, we only use these constraints on
the second level of the dendrogram. In the task of building more stable dendro-
grams, we are mainly interested in the dendrogram stability on the first level.
Therefore, we additionally decided to use only constraints from the first level.
Nevertheless, our algorithm could easily be expanded to make use of constraints
from different levels of the dendrogram. Furthermore, we build the combined
transitive closure [10] over all constraints to get the most from our background
knowledge and to avoid presenting contradictory constraints.

3.2 Algorithm: Constrained-Divisive

Divisive hierarchical clustering starts the clustering procedure with the complete
data set in one cluster. The largest available cluster is then at each subsequent
step divided into two clusters until finally all clusters contain only one single data
item. To identify the largest available cluster, usually the diameters of all clusters
are compared. To find out where to split the chosen cluster, its element with the
largest average distance to all other elements can be used as the initial item
of the new cluster. According to a user-defined distance measure all remaining
points are assigned to their most similar cluster.

Our implementation of CONSTRAINED-DIVISIVE modifies this basic divi-
sive algorithm. Only on the first partitioning, i.e. the clustering into two clusters,
we have to include the constraints, on all other steps the constraints are not used

Algorithm 1. Constrained-Divisive
CONSTRAINED-DIVISIVE(data set D = {d1, . . . , dn}, must-links Con= ⊆ D × D,
cannot-links Con�= ⊆ D × D)

1. Let C be the initial cluster group: C = {D}.
2. Select the cluster Cm ∈ C with the largest dissimilarity between any two of its

objects. Divide Cm following (3) to (7).
3. Select the element sz with the highest average dissimilarity to all other elements

and, if clustering the first level, with an unresolved cannot-link. sz initiates the
splinter group S. If clustering the first level:
∀d ∈ Cm, s ∈ S : If (di, sj) ∈ Con=, move di to S.

4. ∀d still ∈ Cm, s ∈ S : Compute the difference of distances:
Diff(i) = [averagedistance(di, dj)] − [averagedistance(di, sj)].
Select the element dh with the greatest difference Diff(h).
If clustering the first level: If ∃sj ∈ S : (dh, sj) ∈ Con�=, set Diff(h) = 0.
If Diff(h) > 0, move dh to the splinter group S.

5. Repeat (4) and (5) until all differences Diff(h) are negative.
6. Now the original cluster ist split into two clusters. One is the splinter group S, the

other is formed by the remaining elements in Cm.
7. Iterate between (2) and (7) until all clusters {C1 . . . Ck} contain only a single

element.
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any more and we compute the dendrogram according to the basic algorithm. In
the following we comment the clustering process from the first step more precisely.
We include cannot-links into two decisions. When looking for the first element to
split we could use an element with a cannot-link and a large average distance to
all other elements. Secondly we avoid violating cannot-links when assigning ele-
ments to a chosen cluster. In addition we use must-links when assigning elements
to a new cluster by moving all linked elements at once. This proceeding guaranties
not not violate any constraints during the clustering into two clusters.

Our clustering algorithm could easily be expanded to make use of constraints
from different levels. Therefore, one set of constraints for each level and an
indicator for the context (the level) of this set must be included. Every set of
constraints then should only be used in its context.

4 Experiments and Results

4.1 Data Sets

The first data set we analyzed is an artificial example of a two-dimensional
problem containing three different clusters. We built each cluster by the use of a
Gaussian distribution as seen in Figure 4. A partition into three clusters is easy
to compute, because the clusters are obviously separable. Nevertheless, when
removing some data items the partition into two clusters is not stable.

Our second data set comes from gene expression profiles from the pancreas
(see Buchholz et al. [12]). This data set provides two classes (pancreas cancer vs.
pancreatitis/normal) for 62 samples. Each sample is characterized by 169 gene
expression values.

4.2 Evaluation Method

There is no gold standard for evaluating clustering results and therefore it is
necessary to define the basic problem. In our study we want to compare the
results from different clusterings. Jain & Dubes [13] suggest to use a relative
criterion to measure the agreement between two clusterings. We do not measure
the totally agreement of two dendrograms, but the agreement on a selected
partition. As we have the a-priori information about the cluster membership of
all samples on the first levels, we can measure the stability of the clustering
algorithm by comparing the cluster results with this external clustering. On the
other hand we can measure the stability on the lower levels by comparing all
clusterings from the different subsets with each other.

We make use of the Rand Index [14]. Given a set of n items and two partitions
P and Q there are four ways to compare clusters in these different partitions.
Let a be the number of all pairs of items in the same cluster in P and in the
same cluster in Q, b be the number of all pairs of items in the same cluster in
P but not in the same cluster in Q, c be the number of all pairs of items not in
the same cluster in P but in the same cluster in Q and d the number of all pairs
of items in different clusters in both partitions. The scores a and d therefore
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represent agreements, the scores b and c disagreements in the partitions. The
Rand Index is the sum of the correct decisions compared to all decisions:

a + d

a + b + c + d
(1)

The value for perfect agreement of two partitions is 1. One advantage of comput-
ing the Rand Index is the possibility to include the constraints into the evaluation
result. As we count pairwise clustering decisions, we omit the constrained pairs
from the computation of the Rand Index. This Corrected Rand Index is a better
indicator for the improvement of the clustering algorithm, because it only counts
real decisions.

4.3 Results

For our artificial data set we only measure the stability on the first level. Here we
want to get a more stable partition into two clusters. We compare all results from
CONSTRAINED-DIVISIVE to the external label. Table 1 shows the results for
this test. After removing randomly 10% of the data items ten times and adding
3% and 5% random constraints we computed the Corrected Rand Index for each
run. By adding constraints we could improve the stability of the dendrogram on
the first level.

Table 2 shows the results for the microarray data set. Here we not only mea-
sured the stability on the first level of the dendrograms but also analyzed the
effect from the constraints on the stability on the lower levels of the dendro-
grams. We computed the Rand Index for the results on each level over all runs.

Table 1. Stability results for CONSTRAINED-DIVISIVE on the first data set. After
removing 10% of the data items and adding 3% and 5% randomly constrained pairs
from partitioning into two clusters the stability on the first level increases. The value
of the Corrected Rand Index is the median from 50 runs. The second value counts the
number of correct partitionings into two clusters according to the external label.

Constraints Corrected Rand Index Correct decisions

without 0.89 23

3% 1 28

5% 1 33

Table 2. Stability results for CONSTRAINED-DIVISIVE on the pankreas data set.
After removing 10% of the data items and adding 5% and 10% constrained pairs from
partitioning into two clusters the stability on the first level increases. The value of the
Rand Index is the median from 50 runs. The further rows show the median for the
Rand Index from comparing the different partitionings on the lower levels.

Constraints Rand Index Level 5 Level 10

without 0.96 0.96 0.94

5% 1 0.98 0.93

10% 1 0.98 0.94
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The median from these values indicates that the constraints improve the stability
even for some lower levels.

5 Discussion and Conclusion

Clustering of gene expression profiles is an important task in DNA microar-
ray analysis. As hierarchical clustering algorithms can predict a basic branching
structure they are often used in this context [15]. Nevertheless, clustering dif-
ferent subsets of DNA data or adding some new samples to the data set may
result in getting contradictory dendrograms. Since we are interested in getting
stable dendrograms to provide a prediction of the branching structure, we tried
to improve the dendrogram stability by including background knowledge.

Davidson & Ravi [9] presented an agglomerative hierarchical clustering
algorithm using constraints and demonstrated the enhancement in the clus-
ter accuracy. Their algorithm stops if no more agglomerations according to the
cannot-links can be performed. This results in root-less dendrograms. Addition-
ally they provided constraints from one particular partitioning and then used
these constraints during the complete clustering process. In Section 2 we pointed
out that this kind of constraining holds the risk of inducting wrong constraints.
As a result their approach is not able to provide a rough estimation of the
branching stucture on the top levels in the dendrogram and may lead to variable
dendrograms.

In microarray data analysis a rough estimation of the subgrouping is best seen
at the top of the dendrogram, whereas the detailed hierarchy in the lower lev-
els is often not as important. We implemented a divisive hierarchical clustering
algorithm and included background knowledge in the form of constraints. On
the basis of our considerations about the effects of constraints in the hierarchi-
cal clustering process we decided to restrict the use of constraints on the first
level of the dendrogram and did not to use constraints from the lower levels. By
comparing the results from unconstrained and constrained divisive hierarchical
clusterings we could show that this inclusion of constraints in the divisive hier-
archical clustering algorithm results in more stable dendrograms. Furthermore,
the positive effect of the constraints from the first level of the dendrogram even
seem to improve the stability of the lower levels.
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